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Abstract
A method devised by the author is used to calculate analytical expressions
for one-loop integrals at finite temperature. The regularization of the
integrals yields expressions which have a non-polynomial nature in the inverse
temperature. A comparison with previously published results is presented and
the advantages of the present technique are discussed.

PACS numbers: 11.10.Wx, 11.10.−z

1. Introduction

In this paper we present a new technique which allows us to evaluate to a high degree of
precision one-loop integrals occurring in finite-temperature problems in quantum field theory.
Such integrals typically involve series, due to summation over the the Matsubara frequencies,
ωn = 2πnT , with n = 0,±1, . . . [1], which cannot be done analytically.

The method that we propose here is derived from the powerful ideas of the linear delta
expansion (LDE) and of variational perturbation theory (VPT) (see [2] and references therein);
we briefly sketch how such methods work.

First one interpolates a non-perturbative Lagrangian (Hamiltonian) L with a solvable one
L0, which depends on one or more arbitrary parameters; the interpolated Lagrangian is then
split into a ‘leading’ term, chosen to be L0 itself and into a ‘perturbation’, L − L0. Although
the ‘perturbative’ term will not be a priori small, a perturbative expansion is carried out and
physical quantities are calculated. To finite order in perturbation theory, one thus obtains an
expression which contains an artificial dependence upon the arbitrary parameters: however, if
the expansion were to be carried out to all orders such dependence would have to cancel out
provided that the perturbative series converges. In order to minimize such dependence, one
applies the principle of minimal sensitivity (PMS) [3], which selects the value of the arbitrary
parameter for which the physical quantity is less sensitive to changes in the parameter itself.
The parameter determined in this way is normally such to make L − L0 a perturbation and
depends on the ‘natural’ parameters present in L. For this reason, the expansion obtained by
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using this method does not provide, to a finite order, a polynomial in the parameters of the
model, as would be the case for a genuinely perturbative technique.

The ideas behind the LDE and the VPT are really very general and have been successful in
dealing with a variety of problems of quite different nature, ranging from quantum field theory
to classical and quantum mechanics. In this paper, in particular, we pursue the application of
some results which were recently obtained by the author [4]: in that paper the author developed
a method to accelerate the convergence of a certain class of mathematical series (including the
Riemann and Hurwitz zeta functions) and proved that the new series obtained in such a way
converge exponentially to the correct results. As we will see in this paper, some of the series
treated in [4] are relevant for the evaluation of one-loop integrals at finite temperature and will
be used to obtain arbitrarily precise analytical approximations to such integrals which are not
polynomials in the inverse temperature.

The paper is organized as follows: in section 2 we review some of the results of [4] and
explain the method; in section 3 we apply the results of section 2 to the calculation of one-loop
integrals at finite temperature and compare them with the results in the literature [5–8]; finally
in section 4 we draw our conclusions and discuss further possible applications of this method.

2. The method

In this section we describe the method of [4], which allows one to accelerate the convergence
of certain series. One of the applications which was discussed in that paper is to the zeta-like
function defined as

ζ(u, s, ξ) ≡
∞∑

n=0

1

(nu + ξ)s
, (1)

where s, u and ξ are real parameters. This series converges for us > 1. The special cases
obtained by taking (u, ξ) = (1, 1) or u = 1 correspond to the Riemann and Hurwitz zeta
functions, respectively. Further examples of application of this method are contained in [4]
and the interested reader should refer to that paper for further reading.

We write

ζ(u, s, ξ) = 1

ξ s
+

∞∑
n=1

1

(nu + ξ)s
(2)

and by simple algebra we convert it to the form

ζ(u, s, ξ) = 1

ξ s
+

∞∑
n=1

1

nsu

1

(1 + λ2)s

1

(1 + �(n))s
, (3)

having introduced the definition

�(n) ≡ ξ/nu − λ2

1 + λ2
. (4)

We stress that equation (3) is still an identity and that no approximation has been made so
far. λ here is an arbitrary parameter which was introduced ‘ad hoc’: this procedure is typical
of the linear delta expansion (LDE) and of variational perturbation technique (VPT) [2].

Clearly, when the condition |�(n)| < 1 is met, one can expand equation (3) in powers of
�; such a condition requires that

∣∣ ξ−λ2

1+λ2

∣∣ < 1, i.e. that λ2 >
ξ−1

2 and ξ > −1.
We can therefore write

1

(1 + �(n))s
=

∞∑
k=0

�(k + s)

�(s)k!
(−�(n))k (5)
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and convert the series (3) to the equivalent series:

ζ(u, s, ξ) = 1

ξ s
+

∞∑
n=1

∞∑
k=0

�(k + s)

�(s)k!

k∑
j=0

(
k

j

)
λ2(k−j)

(1 + λ2)s+k

(−ξ)j

nu(s+j)
. (6)

By interchanging the sums and performing the sum over n, we finally obtain the expression

ζ(u, s, ξ) = 1

ξ s
+

∞∑
k=0

�(k + s)

�(s)

k∑
j=0

(−ξ)j

j !(k − j)!

λ2(k−j)

(1 + λ2)s+k
ζ(u(s + j)). (7)

We stress that equation (7) is still exact for λ2 >
ξ−1

2 and ξ > −1 and that it converges
exponentially. Actually, this equation describes an entire family of series, all converging to the
same function, although with different rates of convergence. When the sum in equation (7) is
truncated to a finite value, a fictitious dependence on the arbitrary parameter λ is generated: in
order to minimize such dependence and to obtain a series with an optimal rate of convergence,
one can apply the principle of minimal sensitivity (PMS) [3], corresponding to selecting the
value of λ for which the derivative of the partial sum with respect to λ vanishes.

To leading order, i.e. considering only the first two terms in the series, one obtains the
result

λ
(1)
PMS =

√
ξ

√
ζ(u(1 + s))

ζ(su)
, (8)

which can then be used inside equation (7). Note that equation (8) implies that ξ � 0. The
precision of these formulas has been investigated in [4], showing that extremely precise results
are in general obtained already working to low orders.

A final remark is in order: in principle, one would like to calculate λPMS to high orders;
while this is certainly possible, it is not the best option to follow since the high-order expressions
for λPMS are normally very involved. On the other hand, one can use λ

(1)
PMS to all orders as long

as it fulfils the condition
(
λ

(1)
PMS

)2
> (ξ − 1)/2. For example, if one takes u = 2 and s = 3/2,

a case which we will consider later in this paper, this condition is always met. Of course, the
price that one pays with this choice is a slightly smaller convergence rate, which however is
definitely shadowed by the analytical simplicity.

3. Applications: one-loop integrals at finite temperature

We will follow the notation set in [6] and write the expression for a general one-loop integral
at finite temperature in the form

J (m, a, b) = T µ2ε

∞∑
n=−∞
n�=0

∫
dDk

(2π)D

(k2)a[
k2 + ω2

n + m2
]b

,

µ being the scale brought in by dimensional regularization, and a and b being integers (a � 0
and b > 0). Following [6], we also define

K2 ≡
(

k

2πT

)2

, M2 ≡
( m

2πT

)2
, 	2 ≡

( µ

2πT

)2

and obtain

J (M, a, b) = T (2πT )3+2a−2b2	2ε πD/2

(2π)D

�(D/2 + a)

�(D/2)

�(l)

�(b)
S(M, l), (9)
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where

S(M, l) =
∞∑

n=1

1

(n2 + M2)l
, (10)

and l = b − a − D/2 and D = 3 − 2ε. Depending upon the value of l, the series of
equation (10) could be divergent and therefore need regularization.

Equation (10) is clearly of the form considered in equation (1) and one can write

S(M, l) = − 1

M2l
+ ζ(2, l,M2), (11)

where

ζ(2, l,M2) = 1

M2l
+

∞∑
k=0

�(k + l)

�(l)

k(λ, 2, l,M2) (12)

and


k(λ, 2, l,M2) ≡ 1

(1 + λ2)s+k

k∑
j=0

(−M2)j

j !(k − j)!
λ2(k−j)ζ(2(l + j)).

Once more we stress that although the series all converge to the same result independently
of λ (provided that λ >

ξ−1
2 ), the partial sums, obtained by truncating the series to a finite

order, will necessarily display a dependence on the parameter. Such dependence, which is an
artefact of working to a finite order, will also make the rate of convergence of the different
elements of the family λ-dependent. Since it is desirable to obtain the most precise results
with the least effort, one will select the optimally convergent series by fixing λ through the
‘principle of minimal sensitivity’ (PMS) [3]. The solutions obtained by applying this simple
criterion display in general the highest convergence rate and, once plugged back in the original
series, provide a non-polynomial expression in the natural parameters.

In the present case, the ‘natural’ parameter in equation (10) is M2 and to first order the
PMS yields

λ
(1)
PMS = M

√
ζ(2(1 + l))

ζ(2l)
. (13)

On the other hand, if the value λ = 0 is chosen, then one obtains the series

ζ(2, l,M2) = 1

M2l
+

∞∑
k=0

�(k + l)

�(l)

(−M2)k

k!
ζ(2(l + k)), (14)

which, to a finite order yields a polynomial in M. Note that such series corresponds to the
expansion used in [6].

In figure 1 we have compared ζ(2, 3/2, ξ) calculated numerically with the first-order
approximations obtained by using equation (12) with λ = λ

(1)
PMS and λ = 0, which are

ζ
(1)
PMS(2, 3/2, ξ) = 1

ξ 3/2
+

ζ(3)5/2

(ζ(3) + ξζ(5))3/2 , (15)

ζ
(1)
λ=0(2, 3/2, ξ) = 1

ξ 3/2
+ ζ(3) − 3

2
ξζ(5), (16)

where the second and third terms in the second equation can be obtained by Taylor expanding
the first equation. In figure 2 we have plotted ζ(2, 3/2, ξ) as a function of 1/ξ , showing that
our series with few terms is very accurate even for ξ � 1.
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Figure 1. ζ(2, 3/2, ξ) calculated numerically (solid line), with the PMS to first order (dashed line)
and using λ = 0 (dotted line).
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Figure 2. ζ(2, 3/2, ξ) calculated numerically (circles) and to order 1 (pluses), 5 (triangles) and
10 (squares) as a function of 1/ξ , and using the λPMS to first order.

In table 1 we have calculated ζ(2, 3/2, 1) using equation (12) to order N with λ
(1)
PMS (second

column) and with λ = 0 (third column). Our formula, using the optimal parameter obtained
to first order, converges exponentially to the exact value, whereas the formula corresponding
to λ = 0 is actually useless (that formula is indeed limited to ξ � 1). Note that ζ(2, 3/2, 1)

calculated with the first 105 terms in equation (1) gives the result 1.512 434 92150; the same
precision is reached with our improved series with only 27 terms. We believe that this result
by itself is sufficient to illustrate the strength of our method.

As an example of the application of our formula, we consider the case studied in
equation (12) of [6], i.e.
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Table 1. ζ(2, 3/2, 1) calculated using equation (12) to order N with λ
(1)
PMS (second column) and

with λ = 0 (third column). The underlined digits are correct.

N ζPMS(2, 3/2, 1) ζλ=0(2, 3/2, 1)

1 1.472 863 606 764 654 015 224 580 847 080 814 83 0.646 665 270 444 539 395 902 689 931 825 898 7386
10 1.512 414 154 851 640 213 060 386 995 257 442 65 3.405 482 727 150 825 241 793 479 671 674 666 0253

100 1.512 434 921 550 203 064 803 095 489 235 000 35 7.189 509 053 068 942 853 725 754 726 982 871 9810

I (m) = T µ2ε

+∞∑
n=−∞

∫
dDk

(2π)D

1

k2 + ω2
n + M2

= T µ2ε

∫
dDk

(2π)D

1

k2 + M2
+ J (M, 0, 1), (17)

which is essentially the one-loop self-energy.
The first integral can be calculated using dimensional regularization, i.e. by writing

dDk = d	D−1k
D−1 dk, letting D = 3 − 2ε. The result obtained in this way is finite and equal

to −MT/(4π). The second term can be written as

J (M, 0, 1) = 2−2−2επ−3/2−3εµ2εT 1−4ε�(−1/2 + ε)

[
− 1

M−1−2ε
+ ζ(2,−1/2 + ε,M2)

]
,

(18)

where the divergences are contained in ζ(2,−1/2 + ε,M2).
By using our equation (14) and retaining only the divergent terms and those independent

of ε, we obtain

I (m) = −mT

4π
+

T 2

12
− m2

16π2

[
1

ε
+ γ − log

4πT 2

µ2

]
+

m4ζ(3)

8(2π)4T 2

− m6ζ(5)

1024π6T 4
+

5m8ζ(7)

32 768π8T 6
− 7m10ζ(9)

262 144π10T 8
+ · · · , (19)

which reproduces the results of [6], which, however, were considered only up to order m4. As
anticipated, the formula obtained is a polynomial in m.

We will now use the optimal series (12) to improve this result. As a matter of fact, we
can use the derivatives (integrals) of a series with respect to the parameter ξ ,

dζ(u, s, ξ)

dξ
= −sζ(u, s + 1, ξ) (20)

to analytically continue our results to any value of s. Indeed, by applying equation (20) twice,
we can write the general expression

J (M, a, b) = 21+2a−2b+2ε	2επ
3
2 +2a−2b+εT 4+2a−2b

�
(

3
2 + a − ε

)
�

(− (
3
2

) − a + b + ε
)

�(b)�
(

3
2 − ε

)
×

(
1 + a − b +

3 − 2ε

2

)(
−a + b +

−3 + 2ε

2

)
×

{∫
dM2

∫
dM2

(
−M−2(2−a+b+ −3+2ε

2 ) + ζ

(
2,

1

2
− a + b + ε,M2

))}
,

(21)
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where the last ζ function is now fully convergent when a = 0 and b = 1. Since this formula
requires a double integration of a convergent series, the result is determined up to two constants
of integration, which will contain the divergent contributions.

By applying equation (12) to first order and using the optimal value of λ given by
equation (13), we obtain the simple result

JPMS(M, 0, 1) = T 2

(
−κ1M

2 − ζ(3)5/2
√

ζ(3) + M2ζ(5)

ζ(5)2

)
+ κ2, (22)

where κ1,2 are the constants of integration independent of M. In order to determine these
constants, we Taylor expand this expression in M and then use M = m/(2πT ), thus obtaining

J (M, 0, 1) ≈ κ2 − (κ1m
2)

4π2
+

m4ζ(3)

128π4T 2
− T 2ζ(3)3

ζ(5)2 − m2ζ(3)2

8π2ζ(5)
− m6ζ(5)

1024π6T 4

+
5m8ζ(5)2

32 768π8T 6ζ(3)
− 7m10ζ(5)3

262 144π10T 8ζ(3)2 + · · · . (23)

This expression can now be compared with the perturbative result and the constants of
integration can thus be extracted:

κ1 = 1

4

[
1

ε
+ γ − log

(
4πT 2

µ2

)
− 2ζ(3)2

ζ(5)

]
,

κ2 = 1

12
+

ζ(3)3

ζ(5)2 .

Equation (22) is a quite remarkable formula: indeed, although it has been derived by
applying our method to first order, it reproduces correctly the terms going as m4 and m6, and
it also provides the coefficients of the higher order terms apart from factors depending on the
Riemann ζ function evaluated at odd integer values1. Of course, we can let the perturbative
result guide us further and use the fact that lim

n	̃∞
ζ(n) = 1 to write the improved formula

JPMS2(M, 0, 1) = 13

12
T 2 − M2T 2

4

[
1

ε
+ γ − log

(
4πT 2

µ2

)
− 2

]
− T 2

16

[(
16

√
1 + M2 − 2M4(−1 + ζ(3)) + M6(−1 + ζ(5))

)]
, (24)

where the notation PMS2 has been introduced to distinguish it from the previous formula.
Note that both equations (22) and (24) are non-polynomial in m.

By putting the pieces together, we finally obtain our approximation to I (m), given by

IPMS2(M) = −MT 2

2
+

13

12
T 2 − M2T 2

4

[
1

ε
+ γ − log

(
4πT 2

µ2

)
− 2

]
− T 2

16

[(
16

√
1 + M2 − 2M4(−1 + ζ(3)) + M6(−1 + ζ(5))

)]
. (25)

When negative values of m2 are considered, corresponding to a spontaneously broken phase,
these results hold for T � T0 ≡ −m2/(4π2).

As a further application of the method described in this paper, we consider the integral

J (φ) = T

2
µ−2ε

∑
k0

∫
d3−2εk

(2π)3−2ε
log(k2 + m2(φ)), (26)

1 We have checked this property to much higher orders than the ones reached in the formula.



6470 P Amore

where k0 = 2πnT , for all n integers. The effective potential to one loop is expressed in terms
of this integral.

Given the relation

I (m) = 1

m

dJ
dm

, (27)

it is not necessary to calculate J (m) which can be obtained as

J (m) =
∫

I (m)m dm + ρ, (28)

where ρ is a constant of integration independent of m.
By using IPMS2 of equation (25), we obtain the simple expression

JPMS2(m) = ρ +
13

24
m2T 2 − m3T

12π
− T

6π
(m2 + 4π2T 2)3/2

− m4

64π2

[
1

ε
+ γ − log

(
4πT 2

µ2

)
− 2

]
+

m6

768π4T 2
(ζ(3) − 1)

− m8

8192π6T 4
(ζ(5) − 1), (29)

which can be expanded in powers of m to give

JPMS2(m) = ρ − 4π2T 4

3
+

m2T 2

24
− m3T

12π
− m4

64π2

(
1

ε
+ γ − log

(
4πT 2

µ2

))
+

m6ζ(3)

768π4T 2
− m8ζ(5)

8192π6T 4
+

m10

65 536π8T 6
+ · · · , (30)

which reproduces exactly equation (3.7) of [7], provided that ρ = 4π2T 4

3 + constant. This last
constant is independent both of m and of T.

We are now in a position to compare our result of equation (29) with the high-temperature
expansion of equation (42) of [8] which reads2

	

2V T 4
= −π2

90
+

y2

6
− y3

12π
+

y4

32π2

[
log

4π

y
− γ +

3

4

]
− y4

16π2

∞∑
k=1

(−1)k
( y

4π

)k �(2k + 1)ζ(2k + 1)

�(k + 1)�(k + 3)
, (31)

after setting the chemical potential to zero3. We have defined y = m/T .
As we can see from table 2, the result of [6] for I (m) would essentially provide the

expansion of equation (31) and thus reproduce the results obtained long time ago by Haber
and Weldon [8]. We regard this procedure as ‘perturbative’ meaning that, when the series in
equation (31) is truncated, a polynomial in powers of m/T is obtained. On the other hand,
our simple formula, equation (29), reproduces correctly the perturbative expansion of [8] up
to order (m/T )8, and up to a factor involving the ζ function calculated at odd integer values,
which however tends to 1 for large values. This makes our simple formula quite precise.
We remind the reader that equation (29) was obtained by applying our method to first order
and that, given the convergence of the method, drastic improvements in the quality of the
approximation are expected if higher orders would to be taken into account. Although the
calculation of higher orders with our method would be an interesting issue by itself, we will
leave it for future work.
2 We divide by an overall factor of 2.
3 In such limit, the hypergeometric functions in the original formula of [8] all go to 1.



One-loop integrals at finite temperature 6471

0 2 4 6 8 10
y

0

2

4

6

8

10

PMS
HW (k

max
 = 10)

HW (k
max

 = 20)

HW ( k
max

= 30)

Figure 3. Comparison between J̃PMS2/T 4 and equation (31) taking kmax = 10 (dashed), kmax = 20
(dotted) and kmax = 30 (dot-dashed) terms.

Table 2. Comparison between equation (31) and the simple approximation of equation (29).

N Equation (31) JPMS2/T 4[
m
T

]6 ζ(3)

768π4
ζ(3)

768π4[
m
T

]8 − ζ(5)

8192π6 − ζ(5)

8192π6[
m
T

]10 ζ(7)

65 536π8
1

65 536π8[
m
T

]12 − 7ζ(9)

3145 728π10 − 7
3145 728π10[

m
T

]14 3ζ(11)

8388 608π12
3

8388 608π12

In figure 3 we have plotted J̃PMS2/T 4, defined by taking out the terms up to order (m/T )4,
and the similar functions obtained from equation (31), performing the sum to three different
orders (kmax = 10, 20, 30). The horizontal scale is y = m/T . We leave to the reader any
judgement on the quality of our approximation. Note that the series of Haber and Weldon
should correspond to our variational series for λ = 0; as we have seen before the criterion
of convergence for a series is that λ2 > M2−1

2 , which for λ = 0 can be fulfilled only if
m/T < 2π . Looking at the figure we indeed see that when we get close to this value, the sum
of [8] becomes ill-behaved.

4. Conclusions

The method that we have described in this paper is quite general and probably could be
extended in the future to deal with a larger class of problems than the one presented here.
We have proved that, by using variational techniques, it is possible to estimate analytically
and to an arbitrary degree of precision series which are difficult to evaluate with standard
techniques. In particular, we have shown that by relating divergent series to convergent ones
through repeated derivatives and then matching the divergences contained in the constants of
integration with the ones coming out of the perturbative calculation, it is possible to obtain a
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non-polynomial expression in the inverse temperature. The expressions obtained in this way
are very accurate even at low orders and low temperatures. There is a huge literature dealing
with field theoretical problems at finite temperature and we feel that this paper can provide a
quite general and useful tool to attack many of these problems. We also believe, although at
present it is still to be confirmed, that the method that we have described could be useful in
the non-perturbative calculation of the Casimir effect, for which zeta function regularization
is a well-established technique (see for example [9]). It would be quite interesting to see if
non-perturbative expressions for the Casimir effect could be calculated analytically. We hope
to apply these ideas to such a problem in the near future. As a final remark, we would like
to stress that despite the simplicity of the ideas that we have illustrated, all the results that we
have obtained are fully analytical and improvable to the desired level of accuracy.
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